首页> 外文OA文献 >On Hamiltonian minimal submanifolds in the space of oriented geodesics in real space forms
【2h】

On Hamiltonian minimal submanifolds in the space of oriented geodesics in real space forms

机译:关于定向测地空间中Hamiltonian极小子流形的讨论   在真实的空间形式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We prove that a deformation of a hypersurface in a $(n+1)$-dimensional realspace form ${\mathbb S}^{n+1}_{p,1}$ induce a Hamiltonian variation of thenormal congruence in the space ${\mathbb L}({\mathbb S}^{n+1}_{p,1})$ oforiented geodesics. As an application, we show that every Hamiltonian minimalsumbanifold in ${\mathbb L}({\mathbb S}^{n+1})$ (resp. ${\mathbb L}({\mathbbH}^{n+1})$) with respect to the (para-) Kaehler Einstein structure is locallythe normal congruence of a hypersurface $\Sigma$ in ${\mathbb S}^{n+1}$ (resp.${\mathbb H}^{n+1}$) that is a critical point of the functional ${\calW}(\Sigma)=\int_\Sigma\left(\Pi_{i=1}^n|\epsilon+k_i^2|\right)^{1/2}$, where$k_i$ denote the principal curvatures of $\Sigma$ and $\epsilon\in\{-1,1\}$. Inaddition, for $n=2$, we prove that every Hamiltonian minimal surface in${\mathbb L}({\mathbb S}^{3})$ (resp. ${\mathbb L}({\mathbb H}^{3})$) withrespect to the (para-) Kaehler conformally flat structure is locally the normalcongruence of a surface in ${\mathbb S}^{3}$ (resp. ${\mathbb H}^{3}$) that isa critical point of the functional ${\calW}'(\Sigma)=\int_\Sigma\sqrt{H^2-K+1}$ (resp. ${\calW}'(\Sigma)=\int_\Sigma\sqrt{H^2-K-1}\; $), where $H$ and $K$ denote,respectively, the mean and Gaussian curvature of $\Sigma$.
机译:我们证明$(n + 1)$维实空间形式$ {\ mathbb S} ^ {n + 1} _ {p,1} $中超曲面的变形会引起空间中正常同余的哈密顿量变化$ {\ mathbb L}({\ mathbb S} ^ {n + 1} _ {p,1})$定向测地线。作为应用程序,我们证明了$ {\ mathbb L}({\ mathbb S} ^ {n + 1})$(分别为$ {\ mathbb L}({\ mathbbH} ^ {n + 1 })$)(关于(对)Kaehler爱因斯坦结构)是局部超曲面$ \ Sigma $在$ {\ mathbb S} ^ {n + 1} $(res。$ {\ mathbb H} ^ {n + 1} $)是功能$ {\ calW}(\ Sigma)= \ int_ \ Sigma \ left(\ Pi_ {i = 1} ^ n | \ epsilon + k_i ^ 2 | \右)^ {1/2} $,其中$ k_i $表示$ \ Sigma $和$ \ epsilon \ in \ {-1,1 \} $的主曲率。另外,对于$ n = 2 $,我们证明每个哈密顿最小面都在$ {\ mathbb L}({\ mathbb S} ^ {3})$(分别为$ {\ mathbb L}({\ mathbb H} ^ {3})$)关于(对)Kaehler保形平坦结构,局部上是$ {\ mathbb S} ^ {3} $(分别是$ {\ mathbb H} ^ {3} $)是功能$ {\ calW}'(\ Sigma)= \ int_ \ Sigma \ sqrt {H ^ 2-K + 1} $(分别是$ {\ calW}'(\ Sigma)= \ int_ \ Sigma \ sqrt {H ^ 2-K-1} \; $),其中$ H $和$ K $分别表示$ \ Sigma $的均值和高斯曲率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号